The generator matrix 1 0 0 0 1 1 1 1 1 1 2X 1 1 1 X 1 X 1 1 X 1 1 X 1 X 1 0 2X 1 1 1 X 2X X 1 1 1 1 1 0 1 0 0 1 1 1 X 2X 1 1 1 X 1 0 1 0 0 0 0 2X+1 1 2X+2 2X+1 1 1 X 2X 1 2X+1 1 1 2 1 0 2X 0 0 1 2 1 1 2X 2X+2 2 1 2X 1 2X+1 X+1 X+2 2 X 1 2X+1 1 X X+2 2X 0 1 1 2 2X+2 X 1 X+2 0 0 1 0 1 0 2X 2 2X+1 X+2 2X+2 1 2 X+2 2 2X 0 2X+1 2X+1 2X+1 X+1 X 1 X+1 1 2X+2 1 X+2 2 2X X+1 X+1 1 X 2X X+2 X+2 2X+1 2X+2 X 2X 2X+2 1 X 0 0 2X+2 X+2 X+2 2X X X+2 X 0 0 0 1 2 1 2X+2 2X+1 X 0 2X+1 X+2 2 X 2X+2 0 X+1 1 1 2X 0 2X+2 1 1 2X+2 2X+2 2X+1 X 1 X X+2 X+2 2 X+2 X+2 X+2 2X+1 X+2 1 2 2X+1 2X X 2 X+1 0 X 2X+1 0 X+1 0 X+2 2X+1 0 0 0 0 2X 0 2X 0 X X 0 X X 0 2X 0 X 2X 2X X X 2X 0 X 2X 0 0 0 2X X X 2X 0 X 0 X 2X 2X 0 0 2X X X 0 2X X X 2X 0 X 0 0 2X 0 0 0 0 0 2X 0 2X X X 0 X X 2X X 2X 2X 0 2X X 0 X X 2X 0 0 X X X 2X 2X 2X 2X X X 2X X X X 2X X 0 0 0 X X 2X 2X 0 0 2X 0 0 generates a code of length 53 over Z3[X]/(X^2) who´s minimum homogenous weight is 91. Homogenous weight enumerator: w(x)=1x^0+168x^91+240x^92+478x^93+792x^94+1116x^95+856x^96+1680x^97+2004x^98+1524x^99+2406x^100+2676x^101+2320x^102+3438x^103+3924x^104+2612x^105+4092x^106+3990x^107+3118x^108+4080x^109+3954x^110+2356x^111+3114x^112+2538x^113+1390x^114+1518x^115+1128x^116+426x^117+474x^118+258x^119+158x^120+108x^121+36x^122+36x^123+6x^125+12x^126+14x^129+2x^132+4x^135+2x^138 The gray image is a linear code over GF(3) with n=159, k=10 and d=91. This code was found by Heurico 1.16 in 38.4 seconds.